\qquad
Continuity
Date \qquad Period \qquad
Determine if each function is continuous at the given x-values. If not continuous, classify each discontinuity.

1) $f(x)=\frac{x}{x^{2}+3 x}$; at $x=-3$ and $x=0$
2) $f(x)=\left\{\begin{array}{l}-2, \quad x \leq 3 \\ x-5, x>3\end{array}\right.$; at $x=3$

3) $f(x)=\frac{x+1}{x^{2}+2 x+2}$; at $x=-3$
4) $f(x)=\frac{x+2}{x^{2}-4}$; at $x=-2$ and $x=2$
5) $f(x)=\frac{x^{2}}{x+1}$; at $x=-1$
6) $f(x)=\left\{\begin{array}{ll}-2 x, & x<3 \\ -x^{2}+8 x-16, & x \geq 3\end{array}\right.$; at $x=3$

Determine if each function is continuous. If the function is not continuous, find the x-axis location of and classify each discontinuity.
7) $f(x)=-\frac{x}{2 x^{2}+2 x+1}$
8) $f(x)=\frac{x}{x^{2}+6 x+9}$
9) $f(x)=\frac{x^{2}+4 x+3}{x+3}$
10) $f(x)=\frac{x}{x^{2}-4 x}$
11) $f(x)= \begin{cases}x+4, & x \leq-2 \\ -2 x-11, & x>-2\end{cases}$
12) $f(x)=\frac{x+7}{x^{2}+3 x}$

Find the intervals on which each function is continuous.
13) $f(x)=\left\{\begin{array}{l}x, x \neq 4 \\ 2, x=4\end{array}\right.$
14) $f(x)= \begin{cases}-2, & x<3 \\ -2 x+6, & x \geq 3\end{cases}$
15) $f(x)=\frac{x-1}{x^{2}-4 x+3}$
16) $f(x)=\frac{x^{2}}{2}+4 x+10$
17) $f(x)=-x^{2}-4 x+2$
18) $f(x)=-\frac{x-2}{x^{2}-3 x+2}$
19) $f(x)=-\frac{x-1}{x^{2}-x}$
20) $f(x)=\frac{x}{x^{2}-6 x+9}$

Critical thinking questions:

21) Write a function that has an infinite discontinuity at $x=100$.
22) Write a function that is continuous over $(-\infty, 0),(0,1)$, and $(1, \infty)$ and discontinuous everywhere else.
\qquad
Continuity
Date \qquad Period \qquad
Determine if each function is continuous at the given x-values. If not continuous, classify each discontinuity.
23) $f(x)=\frac{x}{x^{2}+3 x}$; at $x=-3$ and $x=0$

Removable discontinuity at $x=0$
Infinite discontinuity at $x=-3$
3) $f(x)=\frac{x+1}{x^{2}+2 x+2}$; at $x=-3$

Continuous at $x=-3$
5) $f(x)=\frac{x^{2}}{x+1}$; at $x=-1$

Infinite discontinuity at $x=-1$
2) $f(x)=\left\{\begin{array}{l}-2, \quad x \leq 3 \\ x-5, x>3\end{array}\right.$; at $x=3$

Continuous at $x=3$
4) $f(x)=\frac{x+2}{x^{2}-4}$; at $x=-2$ and $x=2$

Removable discontinuity at $x=-2$ Infinite discontinuity at $x=2$
6) $f(x)=\left\{\begin{array}{lr}-2 x, & x<3 \\ -x^{2}+8 x-16, & x \geq 3\end{array}\right.$; at $x=3$

Jump discontinuity at $x=3$

Determine if each function is continuous. If the function is not continuous, find the x-axis location of and classify each discontinuity.
7) $f(x)=-\frac{x}{2 x^{2}+2 x+1}$
8) $f(x)=\frac{x}{x^{2}+6 x+9}$

Continuous
Infinite discontinuity at $x=-3$
9) $f(x)=\frac{x^{2}+4 x+3}{x+3}$

Removable discontinuity at $x=-3$
11) $f(x)= \begin{cases}x+4, & x \leq-2 \\ -2 x-11, & x>-2\end{cases}$

Jump discontinuity at $x=-2$
10) $f(x)=\frac{x}{x^{2}-4 x}$

Removable discontinuity at $x=0$ Infinite discontinuity at $x=4$
12) $f(x)=\frac{x+7}{x^{2}+3 x}$

Infinite discontinuities at $x=-3, x=0$

Find the intervals on which each function is continuous.
13) $f(x)=\left\{\begin{array}{l}x, x \neq 4 \\ 2, x=4\end{array}\right.$
$(-\infty, 4),(4, \infty)$
15) $f(x)=\frac{x-1}{x^{2}-4 x+3}$
$(-\infty, 1),(1,3),(3, \infty)$
17) $f(x)=-x^{2}-4 x+2$
$(-\infty, \infty)$
19) $f(x)=-\frac{x-1}{x^{2}-x}$
$(-\infty, 0),(0,1),(1, \infty)$

Critical thinking questions:

21) Write a function that has an infinite discontinuity at $x=100$.

$$
f(x)=\frac{1}{x-100}
$$

14) $f(x)= \begin{cases}-2, & x<3 \\ -2 x+6, & x \geq 3\end{cases}$
$(-\infty, 3),[3, \infty)$
15) $f(x)=\frac{x^{2}}{2}+4 x+10$
$(-\infty, \infty)$
16) $f(x)=-\frac{x-2}{x^{2}-3 x+2}$
$(-\infty, 1),(1,2),(2, \infty)$
17) $f(x)=\frac{x}{x^{2}-6 x+9}$
$(-\infty, 3),(3, \infty)$
18) Write a function that is continuous over $(-\infty, 0),(0,1)$, and $(1, \infty)$ and discontinuous everywhere else.

$$
f(x)=\frac{x-1}{x^{2}-x}
$$

